Fouling & Corrosion in Feed Gas Compressor

- Economics
- Locations & Mechanisms
- Causes
- Monitoring
- Control Method
- Case Study
FGC Fouling - Economical Impact

Polymer deposits on compressor internals which increases frictional losses and alters flow pattern

Results In

- Loss of compressor efficiency
- Pressure drop increase in after coolers
- Potential for unbalancing rotor & seal damage

Impact

- Initially increasing speed compensates efficiency loss
- Later it limits plant capacity
- Energy consumption increases all the time
- Increase in suction pressure reduces furnace yields
- Increase in maintenance efforts & cost
Fouling Location

Compressor Internals
Fouling Location

Compressor Labyrinth Seals
Fouling Location

Compressor Discharge Lines
Fouling Location

Compressor After Cooler
Corrosion & Erosion Location

Compressor Corrosion & Erosion
Fouling Mechanism

Chemical Mechanism
- Free Radical Polymerization
- Diels-Alder Condensation

Physical Entrainment
- Wash Oil Impurities
- Caustic Carryover – Inorganic Salts
- Corrosion By-Products
- Carryover from inter-stage KO Drums
Fouling Reasons

High Temperature
- Design inadequacies or operation above design capacity
- Lower MW due to increased severity - $C_p/C_v \uparrow$
- After cooler underperformance/fouling
- Higher CW supply temperature

Concentration of Precursors
- Dienes and other precursors increases with cracking severity
- Recycles from downstream units may contain various reactants
- Contaminants in Fresh Feed, Wash Oil, Chemicals etc.

Presence of Promoters & Catalysts
- Ingress of oxygen or peroxides and other spurious compounds via. >> Feedstock, Recycles, BFW, CW leaks, Chemicals etc.
- By products of Corrosion
Its essential to accurately measure the extent of fouling in running compressor by continuous monitoring

- Helps in initiating corrective actions at right time & location
- Calculation of Polytropic Efficiency
 - Accurate measurement of stage pressure & temperature
 - Stream Compositions
 - Furnace effluent composition from Furnace Models
 - Compressor inlet composition from Simulation Models
 - Water Injection
 - Stage temperature changes due to water injection
 - Simulation Model is essential for efficiency calculations as per injection rates

Any inaccuracies in above makes it difficult or nearly impossible to monitor the extent of fouling in compressor
Fouling Monitoring

- Performance comparison
 - Impact of deviation in operating conditions like feed volume, cracked gas MW, speed etc. needs to be accounted
 - Comparison plots for Design Vs. Actual Compressor performance
 - Monitoring of deviation in design and actual efficiency

Simulation model is used for accurate data generation & comparison

- Vibration analysis, thrust bearing temperatures, torque meters
 - Not a direct unambiguous measurement of fouling
 - Needs to be coupled with other monitoring parameters

- Analysis of casing drain for polymer content

- Pressure drop survey across compressor casings
 - Indicates precise location of fouling in compressor internals
• Fouling in after coolers
 – Flow corrected pressure drop across exchanger
 – Trending of fouling factors
 » Exchanger model accurately predicts fouling for given conditions
 » Helps in monitoring the rate of fouling in exchanger

Use of exchanger model is essential for accurate estimation of fouling factors for given operating conditions

• Specific power consumption of compressor
• Water Injection
 – Optimum injections rates
• pH and Iron content in inter-stage KO drums for monitoring & controlling corrosion
Identifying the mechanism & exact reasons for fouling is key for its control & cost effective mitigation.
Case Study

Ethylene Plant located in USA – Propane Feed

- 5 stage FGC machine
- Severe fouling on shell side of after coolers
- After-cooler ΔP increased to 40 - 42 psi
- Resulted in Plant feed limitation
- Repetitive shutdown to clean the FGC after-coolers
- Severe fouling & Corrosion in compressor internals
- Drop in polytropic efficiency
Case Study

Action points to reduce compressor fouling & corrosion

• Contaminants in Furnace Feed
 – Formation of Aliphatic organic acids in furnace effluent
 – Close monitoring of BFW quality
 – FGC knockout drum pH maintained at 7 (neutral)

• Impact of neutralizer amine
 – Salt formation due to reaction with acid components
 – Ionic Simulation Model developed
 » Predicts the pH, dew point & salt deposition temperature
 » Appropriate selection of neutralizer amine
 » Determination of require quantity of amine for given conditions
 – Amine injection shifted to compressor outlet

• Wash Oil Injection

• Water Injection
 – Use of de-aerated water & optimum rates
Case Study

Design modifications to improve after cooler performance

• Replacement of tube bundle within existing shell
 – Original after-cooler tube bundle geometry:
 >> External fin type tubes
 → Prone to accumulation of fouling material
 → Replaced with plain tubes
 >> Rotated square pitch arrangement
 → Increase in cleaning lane
 → Easier mechanical cleaning
 >> Baffle arrangement modifications

• Positive Impact
 – Reduction in after cooler pressure drop
 – Minimal rise in pressure drop
Case Study

After cooler ΔP has reduced significantly and fouling is being controlled well.
Ingenero Profile And Contact Coordinates

440 Louisiana St., Houston, Texas, 77002, USA
www.ingenero.com info@ingenero.com

A High End Technical Services Company Supporting Operating and Engineering Companies

- Engineering consultants
- EPC
- Process licensors
- Supply Chain companies
- Equipment vendors
- Management consultants
- Lenders and investors
- Insurance companies

- Global business profile
- Strong execution team
- Dedicated center
- Projects

Ingenero Excellence Through Insight

Engineer Big Data analysis and modeling
Software
Process Technology
Engineering Services support end to end

Support services
Questions
Thank You